Industry News

According to ElectroniCast, the combined use of Distributed and Point fiber optics sensors are forecast to reach $5.98 Billion in 2026…

 ElectroniCast Consultants, a leading market/technology forecast consultancy, today announced the release of their market forecast and analysis of the global consumption of Fiber Optic Sensors.

According to the study, the combined use of Distributed and Point (local) fiber optics sensors reached $3.38 Billion last year (2016), and the worldwide value is forecast to reach $5.98 Billion in 10-years (2026). Market forecast data in this study report refers to consumption (use) for a particular calendar year; therefore, this data is not cumulative data.

Both the American region and the EMEA region held similar market share in the overall (distributed- and point-types) fiber optic sensor value last year. The Europe, Middle East, Africa region (EMEA) held a very slight lead in relative market (value) share last year; however, the Asia Pacific region (APAC) is projected to take-over the leadership position during the forecast period.

The EMEA region is forecast to have a strong role in the use of distributed fiber optic systems, driven by the region’s use of systems in aviation, as well as in the

Petrochemical, Natural Resources, Energy/Utility application categories.

In terms of fiber optic point sensors, the American region is forecast to maintain the market share lead throughout the 1st-half of the forecast period (2016-2021), mostly led by the use of Fiber Optic Gyros (FOGs) in the Military/Aerospace application category. The consumption values are based on the end-user application and the end-user region.

FOGs held a 65 percent market share of the worldwide Point fiber optic sensor consumption value in 2016. “All regions, thanks mainly to increases in the use in aviation and military critical mission applications (Unmanned Aerial Vehicle/UAV and missile guidance, navigation, north finding/tracking, robotics, aviation and aeronautics and other) are forecast to show impressive increase consumption quantity (volumes) and values for the FOG systems,” said Stephen Montgomery, Director of the Fiber Optics Components group at ElectroniCast Consultants.

The market forecast of the Distributed Sensors is segmented by the following applications:

  • Manufacturing Process/Factory
  • Civil Engineering/Construction (buildings, bridges, tunnels, etc)
  • Military/Aerospace/Security
  • Petrochemical/Energy/Utilities/Natural Resources
  • Biomedical/Science

The Fiber Optic Point Sensor Forecast further segmented by the following sensing/measuring quantity (measurand) types:

  • Mechanical Strain
  • Temperature
  • Pressure
  • Chemical, Gas, Liquid
  • Vibration, Acoustic, Seismic
  • Displacement, Acceleration, Proximity
  • Electric, Current and Magnetic Field – Fiber Optic Sensors
  • Rotation (such as Fiber Optic Gyroscopes: FOGs)

“ElectroniCast counts each Point fiber optic sensor as one unit; however, the volume/quantity (number of units) of Distributed fiber optic sensors is based on a complete optical fiber line/link, which we classify as a system. Since a distributed optical fiber line (system) may have 100s of sensing elements in a continuous-line, it is important to note that we count all of those sensing elements in a distributed system as one (system) unit – only. Distributed fiber optic sensor systems involve the optic fiber with the sensors embedded with the fiber; also included is the optoelectronic transmitter/receiver, connectors, optical fiber, cable (fiber jacket) the sensor elements, and other related components,” Montgomery added.

According to ElectroniCast, the combined use of Distributed and Point fiber optics sensors reached $3.38 Billion in 2016…

 

Continuous Distributed and Point Fiber Optic Sensor

Global Consumption ($3.38 Billion in 2016)

Source: ElectroniCast Consultants


Tags: CWDM Multiplexer, DWDM Multiplexer,19″ rack mount chassis CWDM, CWDM MUX/DEMUX Module, LGX CWDM Module,8CH CWDM Module, 16CH CWDM Module, 100GHz DWDM Mux/Demux, 200GHz DWDM Mux/Demux

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications,such as 1064nm High Power Isolator,1064nm Components, PM Components, (2+1)x1 Pump Combiner,Pump Laser Protector,Mini-size CWDM,100GHz DWDM,Optical Circulator,PM Circulator,PM Isolator,Fused Coupler,Mini Size Fused WDM.

About Fiber Optic Components

Fiber optic components are an integral part of the fiber optic infrastructure that is deployed across countries as well as continents to meet the increasing demand for the fiber optic communication. The global fiber optic communication market majorly consists of two segments that are fiber optic cables and fiber optic components.

Fiber optic cables use light as the carrier to transfer information between two places. They are used in fiber optic communication wherein they transmit these signals at long distances. They support higher bandwidth as compared to copper cables, which makes them a preferred choice for next-generation communication technologies such as 4G and 5G. Optical signals can resist electromagnetic interference. This results in a lower attenuation of the signal, and it becomes less prone to noise.

The analysts forecast the global fiber optic components market to grow at a CAGR of 10.37% during the period 2017-2021.

Commenting on the report, an analyst from the research team said: “The latest trend gaining momentum in the market is increasing long-haul and ultralong-haul networks. Long-haul optic networks are used for the transmission of information over optic fiber cables for long distances. Long-haul optics are used to connect countries and cities across the globe. Most of these networks range from hundreds to thousands of kilometers. They have mostly migrated to 10 Gbps-based DWDM systems with 32 channels or more.”

According to the report, one of the major drivers for this market is Increasing migration from copper to optic fiber. The major driver for the growth of the fiber optic components market is the migration from copper cabling to optic fiber. Copper fiber uses electrical impulses to send information across long distances. This leads to large attenuations and distortion of data. Copper wires can easily be tapped, which can lead to security issues and challenges. Optic fibers are inexpensive, lightweight, and non-flammable, and can carry higher bandwidths than copper wires.

Further, the report states that one of the major factors hindering the growth of this market is High price of components and their installation. Fiber optic components are priced much higher than their copper counterparts. For instance, the price of a desktop computer network interface card for 10 or 100 Mbps Ethernet on Cat 5 ranges between $60 and $80. Whereas, the price of a fiber network interface card is $100-$400. The cost of fibers varies widely as they have numerous cable and connector styles. Each connector is priced from $1 to $15. The installation cost of a fiber optic line can go up to $30,000 for an entire building. If an ISP chooses to opt for an optic fiber connection, they would need to dig out the entire copper installation wiring and replace it with optical fibers. GoogleFiber, a provider of fiber to the premises, estimated that the cost of wiring a fiber network into a major American city would cost approximately $1 billion. This is an extremely expensive process as ISPs opt for upgrades rather than dig up the entire line.

The average profitability of optical passive component and module suppliers was very close to zero over the last 5 years, despite strong demand for optics. Compared to every other level of the industry supply chain, profitability of the optical component manufacturers was the lowest by far.

Financial reports of several suppliers of optics started to show signs of improvement over the last 2-3 quarters. The average profitability of optical component and module vendors was 2% in 2015, compared to a loss of 1% in 2014. There is a good chance for reaching 5-7% profitability in 2016-2017 and setting a new record. The highest profitability achieved so far was 5.5% in 2010, preceded by more than ten years of heavy losses.

Net profit margins in the optical components value chain

May 25, 2016 News_Release_Profitability of the Optical Component Business Improved Last Year and It May Set a New Record in 2016

Source: Public financial reports

Several component vendors restructured their businesses in 2013-2014 and these efforts are starting to pay off now. Accelink, Applied Optoelectronics, Coadna, Neophotonics and Oclaro reported significant improvements in financial performance. Acacia joined the list of publicly traded vendors recently and holds the record with a 17% net margin for 2015. Finisar’s profits started to improve in the second half of 2015 and we expect this trend to continue.

However, the average profitability is likely to stay in the single digits for a while. This industry is very competitive and it is likely to remain so for the next several years. Demanding customers, shorter product lifecycles and investments required to support development of new products are a heavy burden for suppliers. There are close to 40 vendors in the race to offer 100GbE optics to the cloud companies building mega-datacenters. Not many of these vendors will be successful in the long term, but they will continue to put pressure on the profitability of larger publicly traded companies in the industry.

Many start-up companies, betting their future on supplying high-speed optics to cloud vendors, develop products based on silicon photonics and expect that this new technology will give them a sustainable cost advantage. LightCounting’s report on Integrated Optical Devices offers detailed analysis of the opportunities for silicon photonics technology, and recognizes the potential advantages of this technology. However, we expect that a majority of high-speed Ethernet optics used in mega-datacenters will still be based on more established InP and GaAs based optics even in 2021.

Despite all the risks, developing new manufacturing technologies offers a path to sustainable competitive advantage and long-term profitability. Silicon photonics holds a promise for being such a technology. High-valued acquisitions of silicon photonics companies and the recent IPO of Acacia offered much needed success stories for investors. However, the risk remains high. Many other vendors, starting just to ship silicon photonics based products now, will have to prove themselves in 2016-2018.

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications,such as 1064nm High Power Isolator,1064nm Components, PM Components, (2+1)x1 Pump Combiner,Pump Laser Protector,Mini-size CWDM,100GHz DWDM,Optical Circulator,PM Circulator,PM Isolator,Fused Coupler,Mini Size Fused WDM.

7. Signal feedthrough of the fiber combiner

Besides the pump power handling and the pump coupling efficiency of a fiber combiner, it is important for fiber laser and amplifier applications to maintain the optical properties of the signal light propagating through the fiber combiner. In particular, during the fabrication of the fiber component, externally induced mechanical stress and perhaps a marginal fraction of thermal diffusion of the core dopants [19] can result in a high signal insertion loss in conjunction with a degradation of the signal beam quality. This behavior was expected for large mode area DC fibers with a very low core refractive index (NA ~0.06), and therefore possible beam quality degradations of the signal feedthrough light was investigated (in Section 7.1).

The uninterrupted signal core in the fiber combiner provides the possibility of passing a signal beam through the combiner in forward and backward direction. However, in the case of a backward propagating signal, the pump diodes need sufficient protection against the signal. Thus, in Section 7.2 we investigate the signal to pump isolation of a 4 + 1×1 fiber combiner in a fiber amplifier setup.

7.1 Signal insertion loss and beam quality

In order to determine possible beam quality degradation and a signal insertion loss caused by the signal feedthrough of the combiner, the setup depicted in Fig. 14

fiber combiner

Fig. 14 Setup for beam quality measurements, TF: target fiber, PBS: polarization beam splitter.was used. A signal at a wavelength of 1064 nm was launched into the core of a 2.75 m long Ytterbium-doped DC fiber (Nufern YDF-25/250), which is specified with a signal core diameter of 25 µm (NA 0.06) and a pump core diameter of 250 µm (NA 0.46). Thus, the parameters of the passive TF of the combiner were matched to the active fiber. The coiling diameter of the active fiber was 12 cm to maintain near diffraction limited beam quality [20]. The transmitted signal had a power of about 200 mW and was propagating in reverse direction through the fiber combiner. The beam quality measurements were carried out with a Fabry-Perot ring-cavity. With this cavity it was possible to determine the power fraction in higher-order transversal cavity modes with respect to the Gaussian TEM00 mode by scanning the length of the ring-cavity over a free spectral range (FSR). A detailed description of the measuring setup can be found in Ref [21]. Due to the use of a polarization sensitive beam quality measurement, a half- and a quarter-wave retardation plate in conjunction with a polarization beam splitter (PBS) were used. The determined polarization extinction ratio was better than 17 dB after the propagation of the signal through the active fiber and the fiber combiner.

Before the fusion splice between the active fiber and the 4 + 1×1 combiner, the power in higher-order modes of the active fiber was determined. This measurement served as a reference beam quality for the active fiber. The mode scan in Fig. 15(a)

fiber combiner 2

Fig. 15 Normalized transmitted intensity through a premode cleaner as a function of the ring-cavity length in units of a free spectral range for (a) the reference beam and (b) the signal feedthrough beam of a 4 + 1×1 fiber combiner.

shows the logarithmic normalized intensity over a free spectral range for the reference beam with a power in higher-order modes of 3.1%. This results in a fundamental fiber mode power of at least 96.9% for the reference beam. For the signal feedthrough of the fiber combiner, a power in higher-order modes of only 5.1% was found (Fig. 15(b)).

Consequently, the signal feedthrough fiber (0.7 m long TF) only led to an increase in power in higher-order transversal modes of maximal 2%. Furthermore, it must be considered that additional power transfer to higher-order transversal modes can also be caused by the fusion splice between the active DC fiber and the TF. Hence, good preservation of the signal beam quality, in conjunction with the low signal insertion loss of less than 3%, provides an excellent high power fiber component for monolithic fiber laser and amplifier systems.

Cutting methods of laser cutting machine

Vaporization cutting

It means that vaporization is the main way to remove the processed material. In the process of vaporization cutting, workpiece surface is heated to vaporization temperature quickly by focused laser beams, forming High pressure steam and spraying outward at supersonic speeds. In the meantime, a hole is formed in the laser active area and laser beams reflex several times in the hole to increase the absorption of laser pump power combiner by material.

When high-pressure vapors spray outward, the melted materials are blown away in the kerf till the workpiece is finally cut. Vaporization cutting needs very high power density, which is eighth power of ten watt above per square centimeter. It is usually applied in low flash point materials and refractory materials.

Reaction Fusion Cutting

Reaction Fusion Cutting

When assistant airflow not only blows the melted materials from the kerf but also has thermal reaction with the workpiece, this is the so-called reaction fusion cutting. Gases that can have reaction with workpiece are oxygen or mixture gases containing oxygen. When the surface  temperature of workpiece reach to ignition temperature, strong combustion heat release occurs to improve the laser cutting ability.

Combustion heat release of low carbon steel and stainless steel is 60%. And it is about 90% for reactive metals like titanium.

Compared to vaporization cutting and general fusion cutting, reaction fusion cutting need less laser power density. However, reaction fusion cutting may effect the performance of worpiece since the combustion reaction can lead to chemical reaction on materials.

Fusion Cutting

When adding a assistant airflow system coaxial with laser to  blow the melted materials away from kerf, this kind of cutting is fusion cutting. In fusion fiber coupler cutting, workpiece needn’t to be heated to vaporization temperature so the required laser power density is reduced greatly.

Laser Scribing

It is mainly used in semiconductor materials, in which laser of high power density make a shallow groove in the semiconductor materials of the workpiece and then makes it crack through mechanistic or vibratory methods. The quality is valued by the surface fragments and size of heat affect area.

Cold Chipping

It is a new processing method, which is put forward along with ultraviolet band superpower excimer laser appeared in recent years. The basic theory is that energy of ultraviolet photons is similar to binding energy of many organic materials; this high-energy photons are used to impact bond organic materials thus make it crack, achieving purpose of cutting. This new technology has promising application future, especially in electron industry.

Thermal Stress Cutting

Mechanism of thermal stress cutting is that laser beams heat an area of fragile material to produce evident temperature gradient. The high surface temperature makes expansion and inner lower temperature hinders expansion, forming pulling stress in the surface and radial crushing stress inside. When the two stresses exceed fracture limit strength of the workpiece, crackle appears. And then the workpiece is broken along the normal direction of the crack. It is suitable for glasses and ceramics.

Conclusion: laser cutting machine is a cutting technology of melting and gasifying surface material through focused energy generated by the use of laser specialties and focused lens. It features good cutting quality, high speed, various cutting material and high efficiency.

About DK Photonics

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for fiber laser applications such as 1064nm high power isolator, Cladding Power Stripper, Multimode High Power Isolator, pump combiner,1064nm Band-pass Filter,(6+1)X1 Pump and Signal Combiner, PM Circulator, PM Isolator, optical Coupler. More information, please contact us.

 

Laser has been applied in teaching, military as well as industrial production. Laser cutting machine is one of the applications. It can be used in both metal and non-metal cutting, Melting surface material by laser beam. This article will discuss the work theory of laser cutting machine.

Introduction on the work theory of laser cutting machine

Introduction on the work theory of laser cutting machine.

Laser cutting machine adopts the energy released on the time when laser beam irradiate metal surface. The metal is melt by laser and sinter is blow away by gas. Because laser power is highly focused, only a very little heat effects the other part of metal plate and causes a little or no deformation. Laser can cut any complex shape precisely, which needs no further processing.

Laser source is generally CO2 laser beam high power isolator with operating power of 500~5000W. The power is even lower than that of many household electric heater, and because of lenses and reflectors, laser beams are focused in a very small bit of area. Highly focused energy heat the area quickly and makes the metal plate melted.

Laser cutting machine can cut stainless steal of thickness less than 16mm; when adding oxygen in laser beam, the cutting thickness is 8~10mm but it will generate a thin oxidation film in the cut surface. The maximum thickness is 16mm which leads to larger cutting deviation on the size of components.

Since the advent of laser, numerous laser products have been developed, such as laser printer, laser cosmetic instrument, laser marker, laser cutting machine etc. Due to its late start in China, the laser technology in China is greatly behind the developed countries. Although Chinese manufacturers can produce plenty of laser products, some key parts such as laser tube, driving motor, galvanometer and focus lens are imported products. This leads to an increase on cost thus an increase on consumer’s payment.

In recent years, domestic research and production of  laser products become closer to advanced overseas products with the progress of laser technology in China. Some aspects are even superior to products abroad, which has a leading role in market because of the  advantages of price. Overseas products have absolute predominance in precision machining for its quality on stability and endurance.

Work theory of laser cutting machine

Work theory of laser cutting machine

Laser tube is the core part of laser cutting machine. So, below is an introduction of the most popular laser tube. CO2 laser tube.

Laser tube is composed of hard glasses, so it is fragile. It adopts layer of sleeve construction with discharge tube in the most inside layer. However, the diameter of discharge tube is thicker than laser tube, diffraction between the thickness of discharge tube and the size of flare is in direct ratio; the length of tube is in proportion to output power of discharge tube.  Laser tube generates a large quantity of heat in the operation of laser cutting machine, which influences the normal work. So cold water machine is needed to cool laser tube, ensuring constant temperature for successful running.

Cutting features of laser cutting machine

Advantages of laser cutting:

One — high efficiency

Laser cutting machine is always connected to several numerically-controlled rotary tables to achieve numerical controlled cutting. It only needs to change the NC program to adjust to components of different shapes, which can make 2D cutting as well as 3D cutting.

Two — high speed

When cutting low carbon steel sheets of 2mm thickness, the speed of 1200W laser cutting is 600cmmin; when it is 5mm thick polypropylene resin plate, the cutting speed is 1200cmmin. The material needs no clamping fix in laser cutting process.

Three — high quality cutting

Laser cutting features thin kerf. The two sides of kerf are parallel and the kerf is vertical to the surface. The cutting precision can reach to ±0.05mm. The cutting surface is clean and nice, with roughness of tens of microns. The cut components can even come into use directly without further machining. After laser cutting, the heat effected area is very small and material near to kerf has not been affected, making little deformation, high cutting precicion and perfect geometrical shape

Four — non-contact cutting

Laser cutting is non-contact cutting, which means no tool wear problem. When processing different shapes, there is no need to change tools, the only way is to alter the output parameter of laser. The whole laser cutting process features low noise, little vibration and little pollution.

Five — various cutting material

Compared to oxyacetylene cutting and plasma cutting, laser cutting can be applied on more materials, including metal and non-metal, metal matrix and non-metallic matrix composite, leather, wood as well as fibers.

About DK Photonics

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for fiber laser applications such as 1064nm high power isolator, Cladding Power Stripper, Multimode High Power Isolator, pump signal combiner,1064nm Band-pass Filter,(6+1)X1 Pump and Signal Combiner, PM Circulator, PM Isolator, optical Coupler. More information, please contact us.

6. Demonstration of 440 W pump power handling

After detailed theoretical and experimental characterization of fiber pump combiners with multiple pump ports, a pump power handling performance test was conducted. For these investigations each pump port of a 4 + 1×1 combiner was connected to a fiber coupled pump diode (nLight Pearl) with an output power of ~110 W at a wavelength of 976 nm. The PFF and the delivery fiber of the pump diode had a core diameter of 105 µm with a NA of 0.22. At each fiber output end of the IF, a pump light stripper was applied to avoid the Fresnel reflection of the TP, and therefore the TP was not measured. Up to the maximum total pump diode power of 440 W, a coupling efficiency of 90.2% was experimentally determined (Fig. 13

fiber pump combiners

Fig. 13 Combined pump power for a 4+1×1 high power fiber combiner, * ratio of coupled power to total diode power in percent.

). In the simulations a slightly higher coupling efficiency of 92.8% was obtained. The difference of 2.6% in simulated and measured pump light coupling must be distributed among TP, PAA and PCT, with simulated values of 3.0, 1.4 and 1.7%, respectively. It can be assumed that the PAA-fraction is higher than 1.4%, since the fibers of the combiner are contaminated with dust particles in spite of intensive cleaning. If we assume for each individual loss mechanism an error of 1% related to the total diode power then PCT was 7.5 W ± 4.4 W, i.e. the coating of the TF and the pump power stripper had to handle this fraction of power.

About DK Photonics

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high qualityoptical passive components mainly for fiber laser applications such as 1064nm high power isolator,Cladding Power Stripper, High Power Isolator,pump combiner,1064nm Band-pass Filter,(6+1)X1 Pump and Signal Combiner,PM Circulator,PM Isolator,optical Coupler.More information,please contact us.

Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers(8)

5.2 Simulations of the loss mechanism caused by additional pump ports

As already discussed, the total power loss is comprised of TP, PAA and PCT. Since a TL of 20 mm and a TR of 6 seem to be promising parameters for a fiber combiner with multiple pump ports, Fig. 9

pump combiner

Fig. 9 Simulated losses for a pump combiner with a TL of 20 mm and a TR of 6 providing up to 6 pump ports. Please see Fig. 1for TP, PCT and PAA.

illustrates the behavior of the 3 different loss mechanisms and the total power loss against the number of pump ports. The input pump light NA of the PFFs was 0.22. The simulations clearly show that the TP-fraction as well as the PAA-fraction increase with the total power loss, and the PCT-fraction stays almost constant. The NA-mismatched pump light, which couples into the coating of the target fiber (PCT) can be kept below 1.7%, even up to 6 pump ports. Hence, an increasing number of pump ports and, therefore, scaling of the combined pump power results in additional power losses, but with an insignificant increase of thermal load to the coating of the TF. Of course, due to an increased PAA the combiner housing would be exposed to a higher thermal load, but this can be handled by an adequate thermalconcept. The increased PAA can be explained by pump light rays which couple back from the TF into one of the IFs, further propagate in the converging taper portion of the IF, increase in NA and undergo refraction into the ambient air. The increase of the TP-fraction with additional pump ports can be caused by pump light rays with a low NA which reverse couple into one of the IFs and further propagate there.

Finally, the simulations show that the total pump power loss increases with each additional pump port but the PCT, resulting in thermal load of the TF, does not increase significantly compared to a fiber combiner with a single pump port. In general, for the optical design of a side-pumped coupler with multiple pump ports, a TL as short as possible in conjunction with a TR as low as possible, but still satisfying the required pump coupling efficiency for the desired number of pump ports, ensures efficient pump light combining with low power losses. In contrast, for a single pump port, a longer TL in conjunction with a low TR is advantageous for increasing the pump coupling efficiency and reducing PCT-losses in particular.

5.3 Experimental characterization of pump combiners with multiple pump ports

Since the simulation results indicate that a TL of 20 mm and a TR of 6 are useful taper parameters, fiber combiners with two, four and six pump ports were developed. Each pump port consisted of an IF with a measured TL of 18 mm and a measured TR of 6.7. Each PFF had a NA of 0.15, and to characterize the combiner was connected to a pump diode (Oclaro BMU25) with a pigtail fiber delivering a maximum output power of about 25 W at a wavelength of 976 nm. The delivery fiber of the pump diode had parameters identical to the PFF.

Figure 10(a)

2

Fig. 10 (a) Combined and transmitted power measured for a fiber combiner with 4 pump ports and (b) combined pump power measured for a fiber combiner with 6 pump ports, * ratio of coupled or transmitted power to total diode power in percent.

shows the total diode power with respect to the combined pump power and TP for a fiber combiner with four pump ports. For the combined pump power a coupling efficiency of 92% (93.1% in the simulation) was measured, and the fraction of TP was 3.6% (3.9% in the simulation) compared to the total diode power. Thus, the measured TP of 3.6% was 45% of the total power loss of 8% (Fig. 10(a)). Based on the good agreement between simulation and experiments it can be assumed that the PCT-fraction and PAA-fraction were about 0.6% and 2.3% of the total diode power, respectively.

Microscope images of the top view and of the cross section view, close to the taper waist, of a fiber combiner with 4 pump ports are depicted in Fig. 11(a)

3

Fig. 11 Microscope image of (a) the top view and (b) the cross section view of a fiber combiner with 4 pump ports.

and 11(b).

The experimental results of a developed six pump port fiber combiner with a combined pump power of 141.5 W and an obtained coupling efficiency of 89.6% (91.1% in the simulations) is shown in Fig. 10(b). The fiber combiner with six pump ports was limited by the available pump power and not by thermal problems. For the combiner presented in Fig. 10(b), Fig. 12(a)

4

Fig. 12 (a) Pump coupling efficiency of the individual pump ports of the six pump port fiber combiner presented in Fig. 10(b) and10(b) comparison of the experimentally achieved pump coupling efficiencies with the simulation results for fiber combiners with multiple pump ports.

shows the pump coupling efficiency of each individual pump port with a maximum and minimum pump coupling efficiency of 90.2 and 88.8%. The difference of only 1.4% indicates a very homogeneous fiber bundle structure, and supports the assumption of identical optical behavior of the individual pump ports.

An overview of the experimentally obtained coupling efficiencies with the corresponding simulation results for a fiber combiner with 1, 2, 4 and 6 pump ports is depicted in Fig. 12(b). An agreement of the experimental and simulated results within 1% confirms the applicability of the simulation approach for multiple pump ports. For each fiber combiner a TL of 18 mm, a TR of 6.7 and a PFF with a core NA of 0.15 was applied.

About DK Photonics

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high qualityoptical passive components mainly for fiber laser applications such as 1064nm high power isolator,Cladding Power Stripper,Multimode High Power Isolator,pump combiner,1064nm Band-pass Filter,(6+1)X1 Pump and Signal Combiner,PM Circulator,PM Isolator,optical Coupler.More information,please contact us.

What is fiber laser? The world’s first laser beam is produced in 1960 by the use of flashbulb stimulating ruby crystalline grain. Limited by the thermal capacity of the grain, the pulsed beams is short and the frequency is very low. Although the instantaneous pulse peak can reach up to 106W, it still belongs to low energy output.

fiber laser 1

Source:tamu.edu

Laser technology adopts the beams of light generated by the reflection of laser from polariscope and congregates the beams in focusing device to generate beams with enormous energy. Once the focus is approaching, the workpieces will be melt or vapored in some milliseconds. This opens up a new welding application domain for high power CO2 and high power YAG laser. The key of laser welding equipment is high power laser, including solid laser and gas laser. Solid laser is the so called Nd:YAG laser. Nd is a rare earth elements and YAG represents Yttrium Aluminum Garnet, with similar crystal structure as ruby. The wavelength of Nd:YAG laser is 1.06μm. It can produce beam transmitted by fiber, so it can simplify beam delivery system, which is suitable in flexible manufacturing systems and remote working as well as high welding precision workpieces. Nd:YAG laser of 3-4 KW output is commonly used in automobile industry. Gas laser is the so-called CO2 laser. Its working medium is molecule gases which can generate iraser of 10.6μm in average. It can work continuously and output very high power; the standard laser power is between 2-5 KW.

The major traits of laser welding are as following:

  1. The welding is fast and deep with little deformation.
  2. It can work in room temperature and disparity conditions with simple equipment and device. For example, the laser beam will not offset; laser welding can be really carried out in vacuum, air or any gas environment, or even through glass or any transparent material.
  3. It can weld refractory materials as titanium and quartz and anisotropic materials with good effects.
  4. When welding, depth-to-width ratio can reach to 5:1 and the highest can reach up to 10:1.
  5. It can applied in microwelding. Slight flare can be generated by focused laser beams which can positioning precisely and be applied in mass automatic production of micro and small workpieces’ installation and welding.
  6. It is flexible in welding areas that is difficult to access. Especially in recent years, the adoption of optical fiber transmission in YAG laser processing technology has greatly promoted the popularization and application of laser welding technology.
  7. Beam split is easy to be realized by time and space and multiple beam can be processed all at once, providing conditions for more precise welding.

However, there are some limits of laser welding:

  1. It requires high assembly accuracy for weld and it should has no obvious deviation of beam on workpieces. It is because that the flare is too small and the welding line is too narrow. If the assembly accuracy and beam position cannot meet the requirements, it is easy to make weld defect.
  2. The cost and initial investment on laser and the relevant systems are high.

fiber laser 2

Resource : avio

DK Photonics – www.dkphotonics.com  specializes in designing and manufacturing of high quality optical passive components mainly for fiber laser applications such as 1064nm high power isolator, Cladding Power Stripper, Multimode High Power Isolator, pump combiner,1064nm Band-pass Filter,(6+1)X1 Pump and Signal Combiner, PM Circulator, PM Isolator, optical Coupler. More information, please contact us.

 

According to ElectroniCast, the quantity of field-terminated fiber optic splice-on connectors in North America will increase at an explosive annual rate of 41.9% …

ElectroniCast Consultants, a leading market research & technology forecast consultancy addressing the fiber optics communications industry, today announced the release of a new market forecast of the consumption of field terminated fiber optic fusion splice-on connectors in North America.

Fusion_Splice_on_Connector

Field terminated fiber optic fusion Splice On Connectors (SOC) are installed for rapid repairs or for limited space situations where pre-terminated fiber cabling may be difficult, such as when the cable assembly needs to pass through small openings such as conduit.  The splice-on connectors are an option when the precise length of the optical fiber link is not pre-determined and a field-installed termination solution is required, such as in Fiber to the Home (FTTH) and other communication applications.

Last year, 306-thousand field-terminated fiber optic fusion splice-on connectors were installed in non-OEM applications in North America.  The number of connectors is forecast to increase at an explosive rate of 41.9% per year, reaching 2.49 million units in 2020.  Market forecast data in this study report refers to consumption (use) for a particular calendar year; therefore, this data is not cumulative data.

The Telecommunications application category is forecast to maintain the leadership in relative market share through the year 2018, until the Premises Networks application category is set to capture the lead.  Telecommunication use is forecast for 35.5% annual growth in quantity (2014-2020), mainly driven by access optical fiber deployment.  The Cable TV application is also driven by the use of connectors for FTTH (Home) and FTTB (Building/MDUs – Multiple Dwelling Units).

The market forecast segments the connectors by single-mode and multimode optical fiber, as well as into the following types: MPO, LC, FC, ST, SC, and other.  The use of single mode fiber optic field-terminated fusion splice-on connectors in North America is forecast to increase from 173.8-thousand units in 2014 to 1.49 million in 2020.  Multimode fiber is best suited for use in short lengths, such as those used in datacom and specialty networks and in 2020, multimode connectors are expected to reach 1-million units.

“In 2014 in North America, 4.3-thousand new fusion splicers were brought into Premises Datacom, and the use of field terminated fusion splice on connectors is a major market driver for the use of fiber optic fusion splicers used in premises network applications, the data center (DC) and longer link length datacom cable installations,” said Stephen Montgomery, Director of the ElectroniCast market study.

“The SOCs are emerging as a viable alternative to pre-terminated fiber optic cables (pigtail and cable assemblies/ patch cords).  Also, based on primary research interviews with network planners and installers, we are finding that field terminated fusion splice-on connectors are rapidly being accepted as a go-to solution.  With SOCs, communication network technicians can install reliable cable links with exact lengths, eliminating cable shortness or excess slack that is typically a result with the pre-terminated cable solution,” Montgomery added.

Tags: CWDM Multiplexer, DWDM Multiplexer,19″ rack mount chassis CWDM, ABS plastic box, CWDM MUX/DEMUX Module,  LGX CWDM Module,8CH CWDM Module, 16CH CWDM Module